Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)
\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)
\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)
Cộng (1)(2)(3) theo vế:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)
=> x-1=0; y-1=0; z-1=0
=>x=y=z
=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)
x^2-2y=-1=>x^2-2y+1=0
y^2+1=2z=>y^2-2z+1=0
2z^2=4x-2=>z^2-2x+1=0
cộng vế với vế của 3 pt
ta có x^2-2y+1+y^2-2z+1+z^2-2x+1=0
=>(x-1)^2+(y-1)^2+(z-1)^2=0
=>x-1=0; y-1=0; z-1=0;
=>x=y=z=1
=>x^2015+y^2015+z^2015=3