Svac-xo:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{2^2}{2\left(x+y+z\right)}=1\left(đpcm\right)\)
Svac-xo:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{2^2}{2\left(x+y+z\right)}=1\left(đpcm\right)\)
Cho x,y,z là các số dương thỏa mãn \(\dfrac{^{x^2}}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\)
Hãy tính giá trị của A=\(\dfrac{y^2}{x+y}+\dfrac{z^2}{y+z}+\dfrac{x^2}{z+x}\)
Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)
Cho a,b,c,x,y,z khác 0
Thỏa mãn điều kiện:\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{c}{z}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=10\)
Tính S=\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{z^2}{c^2}\)
Cho \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\) và x + y + z khác 0. Tính \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x + y+z =0
a, Tính \(x^3+y^3+z^3-3xyz\)
b, Tính \(\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)
c, \(\dfrac{1}{y^2+z^2-z^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)
Cho a,b,c ≠ 0 và ba số x,y,z thỏa mãn \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\).Tính x2015+y2015+z2015
cho \(x,y,z>0\). chứng minh rằng
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\text{≥}\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\)
cho x,y,z đôi 1 khác nhau thỏa mãn x2- xy = y2 - yz =z2 - zx
tính P = \(\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)