Ta có :
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Ta có :
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Cho x,y,z là các số nguyên dương. CMR biểu thức sau không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
Cho x,y,z là 3 số nguyên dương
CMR : \(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+2}\)có giá trị là 1 giá trị là 1 số không thuộc tập hợp số nguyên
Cho ba số dương x, y, z thỏa mãn: x + y + z = 1
Tìm giá trị nhỏ nhất của: \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}\)
Giúp
cho x,y,z là số dương.CMR:
D=\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}=\le\frac{3}{4}\)
Cho các số x;y;z thỏa mãn \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\)
CMR : 4(x-y)(y-z)=(z-x)2
Cho x,y,z,t \(_{\in}\) N*
Chững minh M= \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) có giá trị không phải là số tự nhiên
( Gợi ý: CM 1<M<2 cộng thêm mẫu cho dduur x+y+z+t và bớt các mẫu )
\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Chứng minh p nguyên p= \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Tìm các số x,y,z biết
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y=3}{z}=\frac{1}{x+y+z}\)