Bài 5: Bảng căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Minh

cho x,y,z >0 và x+y+z=1

cmr : \(\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\ge15\)

nhờ mn giải nhanh giúp

Xuân Tuấn Trịnh
17 tháng 5 2017 lúc 23:00

Với x,y,z dương

Ta có:(x-y)2\(\ge0\forall x;y\)

=>x2+y2\(\ge\)2xy

Dấu = xảy ra khi x=y

Tương tự y2+z2\(\ge\)2yz

z2+x2\(\ge\)2zx

Cộng vế với vế 3 BĐT =>2(x2+y2+z2)\(\ge\)2(xy+yz+zx)

<=>x2+y2+z2\(\ge\)xy+yz+zx

<=>\(\dfrac{3}{xy+yz+zx}\ge\dfrac{3}{x^2+y^2+z^2}\)

Dấu = xảy ra khi và chỉ khi x=y=z

=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{5}{x^2+y^2+z^2}\)

Áp dụng BĐT bunhiacopski:

\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^3}\right)\le\left(\dfrac{x+y+z}{3}\right)^2=\dfrac{1}{3^2}=\dfrac{1}{9}\)(Do x+y+z=1)

Dấu = xảy ra khi và chỉ khi \(\dfrac{x}{3}=\dfrac{y}{3}=\dfrac{z}{3}\)<=>x=y=z

=>\(\dfrac{5}{x^2+y^2+z^2}=\dfrac{5}{3\cdot\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}\right)}\ge\dfrac{5}{3\cdot\dfrac{1}{9}}=15\)

=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge15\)(đpcm)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\z+y+z=1\end{matrix}\right.\)<=>x=y=z=\(\dfrac{1}{3}\)


Các câu hỏi tương tự
allsa1
Xem chi tiết
svtkvtm
Xem chi tiết
TTTT
Xem chi tiết
Tung Nguyễn
Xem chi tiết
Inequalities
Xem chi tiết
phú quý
Xem chi tiết
Vi Lê Bình Phương
Xem chi tiết
TTTT
Xem chi tiết
Như Như
Xem chi tiết