Lời giải:
Ta có:
$A^2=(x+y)^2=x^2+y^2+2xy=2(x^2+y^2)-(x^2-2xy+y^2)$
$=2(x^2+y^2)-(x-y)^2\leq 2(x^2+y^2)$
$A^2\leq 24$
$\Rightarrow -\sqrt{24}\leq A\leq \sqrt{24}$
Vậy $A_{\max}=\sqrt{24}; A_{\min}=-\sqrt{24}$
Lời giải:
Ta có:
$A^2=(x+y)^2=x^2+y^2+2xy=2(x^2+y^2)-(x^2-2xy+y^2)$
$=2(x^2+y^2)-(x-y)^2\leq 2(x^2+y^2)$
$A^2\leq 24$
$\Rightarrow -\sqrt{24}\leq A\leq \sqrt{24}$
Vậy $A_{\max}=\sqrt{24}; A_{\min}=-\sqrt{24}$
cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
1, Cho x,y≥0 thỏa mãn 2x+3y=1 Tìm GTLN, GTNN của A=x^2+3y^2
2, Cho x^2+y^2=52 Tìm GTLN, GTNN của A=2x+3y+4
3, Cho x,y>0và x+y=1 Tìm GTNN của A=(1+1x )/(1+1y )
cho x, y, z ≥ 0 thỏa mãn x + y + z =6. Tìm GTNN và GTLN của
A = x2 + y2 + z2
Cho x,y ∈ R Thoả mãn x+2y=1
a) Tìm GTNN của A=x2+y2
b) Tìm GTLN của B=xy
Cho x,y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của A = \(\frac{x^3+y^3+1}{xy+1}\)
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
cho \(x^2+y^2+xy=1\). Tìm GTNN, GTLN của \(A=x^2-xy+2y^2\)