Dùng cái a + b \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) là ra
Dùng cái a + b \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) là ra
Cho x, y, z > 0 thỏa mãn \(x+y+z\le3\).Tìm GTLN :
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Tìm GTLN của \(\sqrt{x-1}+\sqrt{y-2}\)biết x+y=4
Tìm GTLN của \(H=\sqrt{x+1}+\sqrt{y-2}\) biết x + y =4
Cho x + y=15. Tìm GTNN, GTLN của biểu thức A= \(\sqrt{x-4}+\sqrt{y-3}\)
Cho \(x;y;z\in\left[0;1\right]\).
Tìm max: \(A=x\sqrt{1-y}+y\sqrt{1-z}+z\sqrt{1-x}\)
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
Cho: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, Rút gọn P
b, Tìm GTLN của P
Tìm GTNN & GTLN của y = \(\frac{x-1}{\sqrt{x-4}}+\frac{x+1}{\sqrt{x-3}}\)
Cho biểu thức \(A=\left(\dfrac{2x+\sqrt{x}}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{1+\sqrt{x}+x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\) với \(x\ge0;x\ne1\)
a) Rút gọn A
b) Tìm \(x\) để \(A-2x\) đạt GTLN