\(x+y+2=4xy\le\left(x+y\right)^2\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\ge0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x+y-2\right)\ge0\)
\(\Leftrightarrow x+y\ge2\)
\(P=x+y+\frac{1}{x+y}=\frac{3\left(x+y\right)}{4}+\frac{x+y}{4}+\frac{1}{x+y}\)
\(P\ge\frac{3.2}{4}+2\sqrt{\frac{x+y}{4\left(x+y\right)}}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)