cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
cho x,y,z >0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)
Cho x,y >0 và \(x+y\le1\) .Tìm GTNN của P=\(\left(x+\frac{1}{y}+1\right)^3+\left(y+\frac{1}{x}+1\right)^3\)
Giúp mình gấp câu này,căn quá à: Cho x,y,z>0 và x+y+z=1 tìm GTNN( min) của \(P=\frac{9}{1-\left(xy+yz+zx\right)}+\frac{1}{4xyz}\)
Cho x,y,z > 0. Tìm GTNN của
P = (x-1)2 + (y-2)2 + (z-1)2 + \(\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)
Cm:
Nếu x,y,z >0 thỏa mãn
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
thì \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho \(x,y,z\) là các số thực dương. CMR: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{3\sqrt{xyz}}\)
1) Cho a, b, c > 0 và a + b + c = 1. CMR: 9(a4 + b4 + c4) \(\ge\) a2 + b2 + c2.
2) Cho x, y, z dương thỏa mãn x + y + z = 1. CMR: \(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge768\)