1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho x, y, z >0 thỏa mãn x + y + z= xyz
CMR: \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\le\dfrac{\sqrt{3}}{2}\)
Cho x, y, z >0 thỏa mãn x + y + z = 1
CMR: \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{zx}{zx+y}}\le\dfrac{3}{2}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
cho x,y,z > 0 thỏa mãn \(xy+yz+zx=3\)
Tìm max của \(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}+\dfrac{z}{\sqrt{z^2+3}}\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
Tìm bộ ba số thực x, y, z thỏa mãn: \(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{z}}-\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{xz}}=\dfrac{1}{3}\)