xy=\(\dfrac{1}{2}\)
⇒x2y2=\(\dfrac{1}{4}\) thay vào P
P trở thành :
P=\(\dfrac{x^2+y^2}{\dfrac{1}{4}}\)+\(\dfrac{1}{\dfrac{4}{x^2+y^2}}\)
P=4(x2+y2) + \(\dfrac{1}{\text{4(x2+y2)}}\)≥2 (côsi)
dấu bằng xảy ra khi x=y=\(\dfrac{1}{4}\)
vậy gtnn P=2 khi x=y=1/4
\(\dfrac{1}{4}\)\(\dfrac{1}{4}\)