Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luyri Vũ

Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm MinP \(=x+\dfrac{y^2}{2}+\dfrac{z^3}{3}\)

Akai Haruma
11 tháng 7 2021 lúc 23:52

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$

Áp dụng BĐT AM-GM:

$\frac{y^2}{2}+\frac{1}{2}\geq y$

$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$

$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$

$\Rightarrow P\geq \frac{11}{6}$

Giá trị này đạt tại $x=y=z=1$

 


Các câu hỏi tương tự
Luyri Vũ
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Luyri Vũ
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
khoa
Xem chi tiết