không giải hệ cho biết số nghiệm của hệ
a,2x-y=3 và x+y=1
b,1/3x+y=5 và x+3y=2
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho hai số dương x,y thỏa mãn: xy = 1. Tìm GTNN của biểu thức: \(D=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
cho x,y là hai số dương thỏa mãn x2+y2=1. Tìm GTLN của P=xy+3x+3y
Cho 2 số dương x , y thỏa mãn x . y = 1 . Tìm giá trị nhỏ nhất của biểu thức :
A = \(x^2+3x+y^2+3y+\dfrac{9}{x^2+y^2+1}\)
Cho x,y,z là ba số dương thỏa mãn x+y+z = 3. CMR:
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
Tìm các số nguyên x sao cho: \(x^3-3x^2+x+2\) là số chính phương