\(x^2+\frac{4}{y^2}\ge\frac{4x}{y}\Rightarrow\frac{4x}{y}\le1\Rightarrow\frac{x}{y}\le\frac{1}{4}\Rightarrow\frac{y}{x}\ge4\)
\(M=\frac{3x}{y}+\frac{3y}{16x}+\frac{5y}{16x}\ge2\sqrt{\frac{9xy}{16xy}}+\frac{4.5}{16}=\frac{11}{4}\)
\(\Rightarrow M_{min}=\frac{11}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{\sqrt{2}}\\y=2\sqrt{2}\end{matrix}\right.\)