\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)
\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)
\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)
Dấu "=" khi \(x=y=\frac{1}{2}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)
\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)
\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)
Dấu "=" khi \(x=y=\frac{1}{2}\)
cho x,y >0 và x+y =1
chứng minh rằng \(\frac{1}{xy}+\frac{2}{x^2+y^2}\ge8\)
cho x,y>0 chứng minh rằng \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
2) Cho x,y, khác nhau sao cho \(\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}\). Tính S = \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{2}{xy+1}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho x, y, z > 0 thoản mãn : x(x - 1) + y(y - 1) + z(z - 1) ≤ \(\frac{4}{3}\)
1) Cho 2 số dương x,y thỏa mãn: \(x^3+y^3=x-y\).Chứng minh rằng: \(x^2+y^2< 1\)
2) Cho 3 số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\). Chứng minh rằng: \(a^2+b^2< c^2\)
cho các số x,y,z thỏa mãn \(x\ge y\ge z>0\). chứng minh bất đẳng thức: \(\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y}\ge3x-4y+z\)
I : CMR
a) (ab+1)^2 \(\ge\)\(\frac{4}{ab}\)
b) \(\left(ab+2\right)^2\le\left(a^2+1\right)\left(b^2+4\right)\)
c) \(2\left(4a^2+b^2\right)\ge\left(2a+b\right)^2\)
d) \(x^5+y^5\ge xy\left(x^3+y^3\right)\) với x , y >0
help me !!!
Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1
Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ.
I : Cho x+y=1 . CMR
\(\frac{1}{x}+\frac{1}{y}\ge4\)
II: Cho 4x+y=1 . CMR
\(4x^2+y^2\ge\frac{1}{5}\)
help me !!!