#Bạn_về_tìm_hiểu_các_BĐT_cơ_bản_như_AM-GM_hay_Cauchy-Schwarz_nhé.
Áp dụng BĐT Cauchy-Schwarz dạng phân thức:
\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(''=''\Leftrightarrow x=y\)
#Bạn_về_tìm_hiểu_các_BĐT_cơ_bản_như_AM-GM_hay_Cauchy-Schwarz_nhé.
Áp dụng BĐT Cauchy-Schwarz dạng phân thức:
\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(''=''\Leftrightarrow x=y\)
cho các số x,y,z thỏa mãn \(x\ge y\ge z>0\). chứng minh bất đẳng thức: \(\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y}\ge3x-4y+z\)
cho x,y >0 và x+y =1
chứng minh rằng \(\frac{1}{xy}+\frac{2}{x^2+y^2}\ge8\)
cho x,y >0 và x+y\(\le\)1
chứng minh rằng A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\ge7\)
I : Cho x+y=1 . CMR
\(\frac{1}{x}+\frac{1}{y}\ge4\)
II: Cho 4x+y=1 . CMR
\(4x^2+y^2\ge\frac{1}{5}\)
help me !!!
1) Cho 2 số dương x,y thỏa mãn: \(x^3+y^3=x-y\).Chứng minh rằng: \(x^2+y^2< 1\)
2) Cho 3 số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\). Chứng minh rằng: \(a^2+b^2< c^2\)
I : CMR
a) (ab+1)^2 \(\ge\)\(\frac{4}{ab}\)
b) \(\left(ab+2\right)^2\le\left(a^2+1\right)\left(b^2+4\right)\)
c) \(2\left(4a^2+b^2\right)\ge\left(2a+b\right)^2\)
d) \(x^5+y^5\ge xy\left(x^3+y^3\right)\) với x , y >0
help me !!!
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4) ≥ ab3+a3b+2a2b2 với mọi a,b
Chứng minh:\(\frac{x^2-x+1}{x^2+x+1}\)≥\(\frac{1}{3}\) với mọi x
Cho x, y, z > 0 thoản mãn : x(x - 1) + y(y - 1) + z(z - 1) ≤ \(\frac{4}{3}\)