\(x+2y=\dfrac{\pi}{2}\)
\(\Leftrightarrow x+y=\dfrac{\pi}{2}-y\) thay vào A được:
\(A=\dfrac{cos\left(\dfrac{\pi}{2}-y\right)-cosy}{cos\left(\dfrac{\pi}{2}-y\right)+cosy}\)\(=\dfrac{siny-cosy}{siny+cosy}\)\(=\dfrac{\dfrac{\sqrt{2}}{2}.siny-\dfrac{\sqrt{2}}{2}.cosy}{\dfrac{\sqrt{2}}{2}.siny+\dfrac{\sqrt{2}}{2}cosy}\)\(=\dfrac{cos\dfrac{\pi}{4}.siny-sin\dfrac{\pi}{4}.cosy}{sin\dfrac{\pi}{4}.siny+cos\dfrac{\pi}{4}.cosy}\)
\(=\dfrac{sin\left(y-\dfrac{\pi}{4}\right)}{cos\left(y-\dfrac{\pi}{4}\right)}\)\(=tan\left(y-\dfrac{\pi}{4}\right)\)
\(x+2y=\dfrac{\pi}{2}\Rightarrow x+y=\dfrac{\pi}{2}-y\)
\(\Rightarrow cos\left(x+y\right)=cos\left(\dfrac{\pi}{2}-y\right)\)
\(\Rightarrow cos\left(x+y\right)=siny\)
Do đó: \(A=\dfrac{siny-cosy}{siny+cosy}=\dfrac{\sqrt{2}sin\left(y-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(y-\dfrac{\pi}{4}\right)}=tan\left(y-\dfrac{\pi}{4}\right)\)