Rút gọn cac biểu thức sau:
\(A=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(B=sin\left(x+\dfrac{85\pi}{2}\right)+cos\left(2017\pi+x\right)+sin^2\left(33\pi+x\right)+sin^2\left(x-\dfrac{5\pi}{2}\right)+cos\left(x+\dfrac{3\pi}{2}\right)\)\(C=sin\left(x+\dfrac{2017\pi}{2}\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x+sin\left(x+\dfrac{9\pi}{2}\right)\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
Chứng minh đẳng thức:
1 ,\(tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)+cot\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)=\dfrac{2}{cosx}\)
2 ,\(sin^8x-cos^8x=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)\)
3 ,\(3-4cos2x+cos4x=8sin^4x\)
4 ,\(sin\left(2x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)-cos\left(2x+\dfrac{\pi}{3}\right).cos\left(\dfrac{2\pi}{3}-x\right)=cosx\)
5 ,\(\sqrt{3}cos2x+sin2x+sin\left(4x-\dfrac{\pi}{3}\right)=4cos\left(2x-\dfrac{\pi}{6}\right).sin^2\left(x+\dfrac{\pi}{6}\right)\)
Cho cos2x=-\(\dfrac{4}{5}\), voi \(\dfrac{\pi}{4}< x< \dfrac{\pi}{2}\). Tinh sinx, cosx, sin(x+\(\dfrac{\pi}{3}\)), cos(2x-\(\dfrac{\pi}{4}\)).
Rút gọn biểu thức S=sin\(\left(x+\dfrac{2017\pi}{2}\right)\)+2sin2(x-\(\pi\)) +cos(x+2019π)+cos2x
Rút gọn các biểu thức :
a) \(\sin\left(a+b\right)+\sin\left(\dfrac{\pi}{2}-a\right)\sin\left(-b\right)\)
b) \(\cos\left(\dfrac{\pi}{4}+a\right)\cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}\sin^2a\)
c) \(\cos\left(\dfrac{\pi}{2}-a\right)\sin\left(\dfrac{\pi}{2}-b\right)-\sin\left(a-b\right)\)
Cho \(\cos\alpha=\dfrac{1}{3}\). Tính \(\sin\left(\alpha+\dfrac{\pi}{6}\right)-\cos\left(\alpha-\dfrac{2\pi}{3}\right)\) ?
1. Rút gọn biểu thức \(P=cos^4x-sin^4x\)
\(A.P=cos2x\) \(B.P=\dfrac{3}{4}+\dfrac{1}{4}cos4x\) \(C.P=\dfrac{1}{4}+\dfrac{3}{4}cos4x\) \(D.P=\dfrac{3}{4}-\dfrac{1}{4}cos4x\)
2.Đơn giản biểu thức \(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(A.3sina-2cosa\) \(B.3sina\) \(C.-3sina\) \(D.2cosa+3sina\)
Trắc nghiệm nhưng mong mn trình bày bài làm giúp em để tham khảo với ạ. Em cảm ơn