Cho \(x^2+y^2=2\) (x;y > 0). Biểu thức \(A=xy^2\) đạt giá trị lớn nhất tại \(x=x_0\) và \(y=y_0\)
Biết \(x_0+y_0^2=\frac{a+\sqrt{b}}{c}\) với a,b,c là các số nguyên dương và \(\frac{a}{c}\) là phân số tối giản, tính \(P=a^2+b^2+c^2\)
Cho x,y thỏa mãn \(x^2+y^2=1\) . biểu thức \(A=-11x^2+4y^2+8xy\) đạt giá trị lớn nhất là M khi \(x=\frac{a}{\sqrt{c}},y=\frac{b}{\sqrt{c}}\) trong đó a,b,c là các số nguyên dương và \(\frac{a}{c},\frac{b}{c}\) tối giản . Tính P = M + a + b + c
Cho x,y thỏa mãn \(x^2+y^2=1\) . biểu thức \(A=-11x^2+4y^2+8xy\) đạt giá trị lớn nhất là M khi \(x=\frac{a}{\sqrt{c}},y=\frac{b}{\sqrt{c}}\) trong đó a,b,c là các số nguyên dương và \(\frac{a}{c},\frac{b}{c}\) tối giản . Tính P = M + a + b + c
Cho x,y là các số thực sao cho \(2x^2+y^2+xy\ge1\) . Biết rằng giá trị nhỏ nhất của biểu thức \(M=x^2+y^2\) có dạng \(\frac{a-b\sqrt{b}}{c}\)
trong đó a,b,c là các số nguyên dương. Tính tổng S = a + b + c
Cho x,y là các số thực sao cho \(2x^2+y^2+xy\ge1\) . Biết rằng giá trị nhỏ nhất của biểu thức \(M=x^2+y^2\) có dạng \(\frac{a-b\sqrt{b}}{c}\)
trong đó a,b,c là các số nguyên dương. Tính tổng S = a + b + c
biểu thức P = -2|2x - 5| + 2x + 6 đạt giá trị lớn nhất tại \(x=\frac{a}{b}\)(a > 0, b > 0). Với \(\frac{a}{b}\) là phân số tối giản, hãy tính giá trị của biểu thức S = a + b
biểu thức P = -2|2x - 5| + 2x + 6 đạt giá trị lớn nhất tại \(x=\frac{a}{b}\)(a > 0, b > 0). Với \(\frac{a}{b}\) là phân số tối giản, hãy tính giá trị của biểu thức S = a + b
Biểu thức P = |x + 3| + |2x - 5| + |x - 7| đạt giá trị nhỏ nhất tại \(x=\frac{a}{b}\). Với \(\frac{a}{b}\)là phân số tối giản, hãy tính \(S=a^2+b^2\)
Cho các số dương x,y thỏa mãn \(x^2+y^2+\frac{1}{xy}=3\) Tìm giá trị lớn nhất của biểu thức:
P=\(2(\frac{1}{1+x^2}+\frac{1}{1+y^2})-\frac{3}{1+2xy}\)