Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Thị Hải Anh

cho x>0 y>0 và x+y=1 chứng minh \(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\)

ngonhuminh
2 tháng 3 2018 lúc 15:30

\(\left\{{}\begin{matrix}x;y>0\\x+y=1\end{matrix}\right.\)\(\Rightarrow0< xy=t\le\dfrac{1}{4}\)

\(x^4+y^4=\left(1-2t\right)^2-2t\)

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\Leftrightarrow A=8\left[\left(1-2t\right)^2-2t\right]+\dfrac{1}{t}-5\ge0\)

\(\Leftrightarrow16t^2-32t+\dfrac{1}{t}+3\ge0\)\(\Leftrightarrow16t^3-32t^2+3t+1\ge0\)

<=>\(16t^3-4t^2-28t^2+7t-4t+1\ge0\)

\(\Leftrightarrow4t^2\left(4t-1\right)-7t\left(4t-1\right)-\left(4t-1\right)\ge0\)

\(\Leftrightarrow\left(4t-1\right)\left(4t^2-7t-1\right)\ge0\)

\(\Leftrightarrow B=\left(4t-1\right)\left(8t-7-\sqrt{65}\right)\left(8t-7+\sqrt{65}\right)\ge0\)

\(0< t\le\dfrac{1}{4}\Rightarrow\)\(\left\{{}\begin{matrix}4t-1\le0\\8t-7+\sqrt{65}>0\\8t-7-\sqrt{5}< 0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

mọi phép biến đổi <=> => dpcm

Unruly Kid
3 tháng 3 2018 lúc 11:54

Sử dụng BĐT Cauchy-Schwarz nhiều lần, cộng với BĐT phụ \(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\), ta có:

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge\dfrac{8\left(x^2+y^2\right)^2}{2}+\dfrac{4}{\left(x+y\right)^2}=4\left(x^2+y^2\right)^2+4\ge4\left[\dfrac{\left(x+y\right)^2}{2}\right]^2+4=5\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)

Ngô Bá Hùng
3 tháng 9 2019 lúc 15:19

Hỏi đáp Toán


Các câu hỏi tương tự
huỳnh thị ngọc ngân
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
dia fic
Xem chi tiết
dia fic
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Big City Boy
Xem chi tiết
Mai Huyền My
Xem chi tiết
Linh Anh
Xem chi tiết