Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Nguyễn

cho x, y, z thỏa mãn (\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)):(\(\dfrac{1}{x+y+z}\))=1

tính giá trị biểu thức B=(x21+y21)(y11+z11)(z2017+x2017)

Akai Haruma
27 tháng 8 2019 lúc 17:19

Lời giải:

Ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)

\(\Leftrightarrow \frac{xy+yz+xz}{xyz}.(x+y+z)=1\Leftrightarrow (xy+yz+xz)(x+y+z)=xyz\)

\(\Leftrightarrow xy(x+y)+yz(y+z)+xz(x+z)+2xyz=0\)

\(\Leftrightarrow xy(x+y+z)+yz(y+z+x)+xz(x+z)=0\)

\(\Leftrightarrow y(x+y+z)(x+z)+xz(x+z)=0\)

\(\Leftrightarrow (x+z)[y(x+y+z)+xz]=0\)

\(\Leftrightarrow (x+z)(y+x)(y+z)=0\)

Do đó:

\(B=(x+y)(x^{20}+....+y^{20})(y+z)(y^{10}+...+z^{10})(z+x)(z^{2016}+x^{2016})\)

\(=(x+y)(y+z)(x+z)(x^{20}+..+y^{20})(y^{10}+..+z^{10})(z^{2016}+x^{2016})=0\)

Akai Haruma
29 tháng 8 2019 lúc 10:21

Lời giải:

Ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)

\(\Leftrightarrow \frac{xy+yz+xz}{xyz}.(x+y+z)=1\Leftrightarrow (xy+yz+xz)(x+y+z)=xyz\)

\(\Leftrightarrow xy(x+y)+yz(y+z)+xz(x+z)+2xyz=0\)

\(\Leftrightarrow xy(x+y+z)+yz(y+z+x)+xz(x+z)=0\)

\(\Leftrightarrow y(x+y+z)(x+z)+xz(x+z)=0\)

\(\Leftrightarrow (x+z)[y(x+y+z)+xz]=0\)

\(\Leftrightarrow (x+z)(y+x)(y+z)=0\)

Do đó:

\(B=(x+y)(x^{20}+....+y^{20})(y+z)(y^{10}+...+z^{10})(z+x)(z^{2016}+x^{2016})\)

\(=(x+y)(y+z)(x+z)(x^{20}+..+y^{20})(y^{10}+..+z^{10})(z^{2016}+x^{2016})=0\)


Các câu hỏi tương tự
Tạ Uyên
Xem chi tiết
Rosie
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết