Vì \(\sqrt[3]{y-\sqrt{y^2+1}}\times\sqrt[3]{y+\sqrt{y^2+1}}\)
\(=\sqrt[3]{\left[y^2-\left(y^2+1\right)\right]}=\sqrt[3]{-1}=-1\)
nên ta có thể đặt \(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Rightarrow\sqrt[3]{y+\sqrt{y^2+1}}=-\dfrac{1}{t}\)
\(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Leftrightarrow y-\sqrt{y^2+1}=t^3\)
\(\Leftrightarrow t^3+\sqrt{1+y^2}=y\)
\(\Leftrightarrow t^6+2t^3\sqrt{y^2+1}+1+y^2=y^2\)
\(\Leftrightarrow\sqrt{y^2+1}=\dfrac{-t^6-1}{2t^3}\)
\(\Leftrightarrow y^2=\dfrac{t^{12}+2t^6+1}{4t^6}-1\)
\(\Leftrightarrow y^2=\dfrac{t^{12}-2t^6+1}{4t^6}\)
\(\Leftrightarrow y=\dfrac{t^6-1}{2t^3}\)
- - -
\(x=t-\dfrac{1}{t}=\dfrac{t^2-1}{t}\)
\(\Rightarrow x^3=\dfrac{t^6-3t^4+3t^2-1}{t^3}=2y-\dfrac{3t^2\left(t^2-1\right)}{t^3}=2y-\dfrac{3\left(t^2-1\right)}{t}=2y-3x\)
\(A=x^4+x^3y+3x^2+xy-2y^2+2014\)
\(=x^3\left(x+y\right)+3\left(x-y\right)\left(x+y\right)+y\left(x+y\right)+2014\)
\(=\left(x+y\right)\left(x^3+3x-2y\right)+2014\)
\(=\left(x+y\right)\left(2y-3x+3x-2y\right)+2014\)
= 2014
Ta có: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=y-\sqrt{y^2-1}+y+\sqrt{y^2+1}+3\left(\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\right)\sqrt[3]{y-\sqrt{y^2+1}}.\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=2y-3x\)
Thế vô B ta được
\(B=\left(2y-3x\right)x+\left(2y-3x\right)y+3x^2+xy-2y^2+2014\)
\(=2014\)