cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
Nghiệm của phương trình \(\dfrac{\left|x-2\right|}{\sqrt{x-1}}\)=\(\dfrac{x-2}{\sqrt{x-1}}\) thỏa mãn điều kiện nào sau đây:
A. x > 1 B. \(x\ge2\) C. x < 2 D. Một điều kiện khác
Gía trị nào của biểu thức S= \(\sqrt{7-4\sqrt{3}}\) - \(\sqrt{7+4\sqrt{3}}\) là:
A. 4 B. \(2\sqrt{3}\) C. \(-2\sqrt{3}\) D. -4
Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\). Tính giá trị của \(\left(x+y\right)\)
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
Cho biểu thức A = \(\left(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\dfrac{4x}{\left(x-1\right)^2}\)
a) Rút gọn A.
b) tính giá trị của A biết \(\left|x-5\right|=4\).
* Cho biểu thức
P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức P xác định
b. Rút gọn P
c . Tìm các giá trị của x để P<0
Chứng minh (với những giá trị của biến làm cho biểu thức có nghĩa)
a) \(\dfrac{\left(3\sqrt{xy}-6y-2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}+\dfrac{2\sqrt{xy}}{x-y}\right)=\sqrt{x}+\sqrt{y}\)
So sánh:
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\) với \(B=\sqrt{5}-\dfrac{3}{2}\)
Giúp với mình sắp cần rồi
Cho biểu thức :
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a) Tìm ĐKXĐ của x và y để P xác định . Rút gọn P
b) Tìm x , y nguyên thỏa mãn phương trình P = 2