\(A=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)
Giả sử \(A\in N\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{x+y+t}\in N\\\dfrac{z}{y+z+t}\in N\\\dfrac{t}{x+z+t}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮x+y+t\\z⋮y+z+t\\t⋮x+z+t\end{matrix}\right.\)
Vì \(x;y;z;t\in N\circledast\) nên:
\(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge x+y+t\\z\ge y+z+t\\t\ge x+z+t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-x\ge x+y+z-x\\y-y\ge x+y+t-y\\z-z\ge y+z+t-z\\t-t\ge x+z+t-t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z\le0\\x+t\le0\\y+t\le0\\x+z\le0\end{matrix}\right.\)
Vì \(x;y;z;t\in N\circledast\) nên những điều trên không thể xảy ra
\(\Rightarrow\) điều giả sử sai,\(A\notin N\left(đpcm\right)\)