Cho P(x) là 1 đa thức có hệ số nguyên thỏa mãn: P(2).P(3).P(4)=154. CMR: đa thức P(x) không có nghiệm nguyên
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức f(x)=x2+x.g(x3)f(x)=x2+x.g(x3) không chia hết cho đa thức: x2−x+1
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)
cho x,y là 2 số thực ≠0 thỏa mãn 2x2+ y2/4 +1/x2=4
A=2018+xy
Tìm các cặp số nguyên x, y thỏa mãn: \(x^2+8y^2+4xy-2x-4y=4\)
Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
Tìm tất cả các số nguyên dương k thỏa mãn k và 3k + 1 đều là các số chính phương.