Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải An

Cho x > 0 , y > 0 và x + y \(^{\ge}\) 6

Tìm GTNN của P = 5x + 3y + \(\dfrac{12}{x}\) + \(\dfrac{16}{y}\)

Phương Trâm
10 tháng 9 2017 lúc 20:19

\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)

\(P=3x+\dfrac{12}{x+y}+\dfrac{16}{y}+2.\left(x+y\right)\)

Áp dụng BĐT Cauchy ta có:

\(3x+\dfrac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\)

\(y+\dfrac{16}{y}\ge8\)

Lại có: \(2\left(x+y\right)\ge2.6=12\)

\(\Rightarrow P\ge12+8+12=32\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)

\(\Rightarrow x=2;y=4\)

Vậy \(P_{Min}=32\Leftrightarrow\left[{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Uyen Vuuyen
22 tháng 12 2018 lúc 19:04

P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)

AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)


Các câu hỏi tương tự
dia fic
Xem chi tiết
dia fic
Xem chi tiết
san nguyễn
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Nấm Chanel
Xem chi tiết
Mai Huyền My
Xem chi tiết
dia fic
Xem chi tiết