Chương III - Góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Phan Bá Hoàng

Cho tứ giác ABCD nội tiếp (O) có đường chéo AC cắt đường chéo BD tại E, tia AD cắt tia BC tại F. Dựng hình bình hành AEBG.

a) Chứng minh FD.FG=FB.FE

b) Gọi H là điểm đối xứng với E qua AD. Chứng minh 4 điểm F,H,A,G cùng thuộc một đường tròn.

Akai Haruma
7 tháng 1 2019 lúc 20:03

Lời giải:

a)

Ta có: \(\widehat{FDE}=\widehat{FCA}\) (góc nội tiếp cùng chắn cung AB)

\(\widehat{FCA}=\widehat{FBG}\) (so le trong với \(GB\parallel AC\) )

\(\Rightarrow \widehat{FDE}=\widehat{FBG}\)

Dễ thấy:

+ \(\triangle FAB\sim \triangle FCD(g.g)\Rightarrow \frac{FB}{FD}=\frac{AB}{CD}\)

+ \(\triangle AEB\sim \triangle DEC(g.g)\Rightarrow \frac{AB}{DC}=\frac{AE}{DE}=\frac{BG}{DE}\) ( \(GB=AE\) do $AEBG$ là hình bình hành)

\(\Rightarrow \frac{FB}{FD}=\frac{BG}{DE}\)

Xét tam giác $FDE$ và $FBG$ có:

\(\widehat{FDE}=\widehat{FBG}\) (cmt)

\(\frac{FD}{FB}=\frac{DE}{BG}\) (cmt)

\(\Rightarrow \triangle FDE\sim \triangle FBG(c.g.c)\)

\(\Rightarrow \frac{FD}{FE}=\frac{FB}{FG}\Rightarrow FD.FG=FE.FB\) (đpcm)

b)

Tương tự phần a, ta chứng minh được \(\triangle FCE\sim \triangle FAG(c.g.c)\)

\(\Rightarrow \widehat{FGA}=\widehat{FEC}=180^0-\widehat{FEA}(1)\)

Mặt khác:

Do $H,E$ đối xứng nhau qua $AD$ nên $AD$ là đường trung trực của $HE$. Suy ra $AE=AH$

$F\in AD$ nên $FE=FH$

\(\Rightarrow \triangle FHA=\triangle FEA(c.c.c)\)\(\Rightarrow \widehat{FEA}=\widehat{FHA}(2)\)

Từ \((1);(2)\Rightarrow \widehat{FGA}=180^0-\widehat{FHA}\)

Do đó $FHAG$ là tứ giác nội tiếp, hay 4 điểm $F,H,A,G$ cùng thuộc một đường tròn.

Akai Haruma
7 tháng 1 2019 lúc 20:05

Hình vẽ:

Góc với đường tròn


Các câu hỏi tương tự
nguyễn tuấn hưng
Xem chi tiết
Nguyễn Văn Phiến
Xem chi tiết
Yến Phạm Hải
Xem chi tiết
Hà Hoàng
Xem chi tiết
chịu ời
Xem chi tiết
Phan Quỳnh Như
Xem chi tiết
Vy
Xem chi tiết
Tuấn Khanh Nguyễn
Xem chi tiết
Ngọc Phạm Kim
Xem chi tiết