cho tứ giác ABCD không là hình bình hành gọi M,N là 2 điểm chạy trên AB, CD sao cho ND/NC=MB/MA=m/n. Gọi E,F,I là trung điểm AC,BD và MN. Đặt AM/AB=CN/CD=k. Đẳng thức nào sau đây là đúng:
A) vecto EI=1/k vecto EF
B) vecto EI=k vecto EF
C) vecto EI+-k vecto EF
D) vecto EI=k/2 vecto EF
cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \(\frac{MA}{MB}=\frac{ND}{NC}\)và I, J lần lượt là trung điểm của AD,BC
a, tính vectoIJ theo vectoAB,DC
b, chứng minh trung điểm P của MN nằm trên đường thẳng IJ
Cho tứ giác ABCD, Gọi I,J,K lần lượt là trung điểm các cạnh AD,BC,CD và G là trung điểm của IJ c/m
a) AB-CD=2IJ
b) GA+GB+GC+GD=0
c)AB+AC+AD=4AG
d) 2(AB+AJ+KA+DA) = 3DB
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
Cho tứ giác ABCD . Các điểm M,N theo thứ tự thay đổi trên các cạnh AD,BC sao cho\(\frac{AM}{AD}=\frac{CN}{CB}\).Các điểm E, F,I lần lượt là trung điểm của AC,BD, MN. Chứng minh I luôn chuyển động trên đoạn EF
cho hình vuông ABCD cạnh bằng 6. Trên cạnh AB lấy M sao cho AM=2MB, trên cạnh CD lấy điểm N sao cho CN=3ND. Tính độ dài vecto \(\overrightarrow{u}=\overrightarrow{DM}+2\overrightarrow{AN}+\overrightarrow{BC}\)
Cho tứ giác ABCD. M, N là trung điểm của AB, CD. Chứng minh vectoAC + vectoBD = vectoAD + vectoBC = 2MN
Cho tứ giác ABCD, trên AB, CD lần lượt lấy điểm M, N sao cho \(\overrightarrow{AM}=k\overrightarrow{AB}\) , \(\overrightarrow{DN}=k\overrightarrow{DC}\) \(\left(k\ne1\right)\).
a, Phân tích \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}\) và \(\overrightarrow{BC}\)
b, Gọi P, Q, I lần lượt là các điểm thuộc các cạnh AD, BC, MN sao cho \(\overrightarrow{AP}=l\overrightarrow{AD},\overrightarrow{BQ}=l\overrightarrow{BC},\overrightarrow{MI}=l\overrightarrow{MN}\). Chứng minh rằng: I, Q, P thẳng hàng
a . cho ∆ ABC .ĐIỂM K nằm trên đoạn AC sao cho AK =1/3 Ac
b. Phân tích vectơ BK theo hai vectơ BA và vectơ BC
Cho hình bình hành ABCD có N là trung điểm CD,M là điểm trên AB sao cho AM =1/3 AB