Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quang Dĩ

Cho tứ giác ABCD, gọi E,D lần lượt là trung điểm các cạnh AB,CD. O là trung điểm EF, M là điểm tùy ý cmr:

vectoAD+vectoBC=2vectoEF

vtOA+vtOB+vtOC+vtOD=vt0

vtAB+vtAC+vtAD=4vtAO

vtMA+vtMB+vtMC+vtMD=4vtMO

nguyen thi vang
29 tháng 9 2019 lúc 15:29

1) Có \(2\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{EC}\)

Lại có : \(\left\{{}\begin{matrix}\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\\\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{EC}\end{matrix}\right.\rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\left(\overrightarrow{AE}+\overrightarrow{BE}\right)+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{0}+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{ED}+\overrightarrow{EC}\) Do đó : \(2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}\left(=\overrightarrow{ED}+\overrightarrow{EC}\right)\)

2) Có : \(\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OE}\left(1\right)\\\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OF}=-2\overrightarrow{OE}\left(2\right)\end{matrix}\right.\)

(1) + (2) => \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OE}+2\overrightarrow{OF}=2\overrightarrow{OE}-2\overrightarrow{OE}=\overrightarrow{0}\)

3) \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{AC}=2\overrightarrow{AC}=4\overrightarrow{AO}\)

4) Ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\overrightarrow{0}=4\overrightarrow{MO}\)


Các câu hỏi tương tự
Trần Hoàng Anh
Xem chi tiết
Xin giấu tên
Xem chi tiết
Phương huyền
Xem chi tiết
Hưng Trần
Xem chi tiết
Yết Nhi
Xem chi tiết
super potato
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hương Giang
Xem chi tiết
Anhh Tínn
Xem chi tiết