a) Cho tam giác ABC đều. Tính giá trị biểu thức \(P=\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{AB}\right)\)
b) Cho cung lượng giác có số đo x thỏa mãn tan x =2. Giá trị biểu thức \(A=\dfrac{\sin x-\cos x}{\sin x+\cos x}\)
c) Giá trị biểu thức \(A=\dfrac{\cos\left(750\right)+\sin\left(420\right)}{\sin\left(-330\right)-\cos\left(-390\right)}\)
Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là 1 điểm thuộc đoạn thẳng CD sao cho \(\overrightarrow{MC}=2.\overrightarrow{DM}\). Gọi N là trung điểm của đoạn thẳng BC và tọa độ của N là: \(N\left(0;2019\right)\).
Gọi K là giao điểm của 2 đường thẳng AM và BD. Biết đường thẳng AM có phương trình là : \(x-10y+2018=0\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng NK ?
P/s: Em xin phép nhờ quý thầy cô và các bạn giúp đỡ bài toán trong đề cương của trường THPT Việt Nam -- Ba Lan ( Thành phố Hà Nội )
Trong mặt phẳng tọa độ Oxy cho ba điểm A(-1; -2), B(3; 2), C(4; -1). Biết điểm E(a; b) di động trên đường thẳng AB sao chop \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\) đạt Min. Tính \(a^2-b^2\)
Cho hai điểm \(A\left(3;-1\right);B\left(-1;-2\right)\) và đường thẳng d có phương trình \(x+2y+1=0\)
a) Tìm tọa độ điểm C trên đường thẳng d sao cho tam giác ABC là tam giác cân tại C
b) Tìm tọa độ của điểm M trên đường thẳng d sao cho tam giác AMB vuông tại M
Cho các véctơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) thỏa mãn \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{c}\right|=z\) và \(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\) Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Cho tam giác ABC có tâm đường tròn nội tiếp I, các đường cao của tam giác là \(h_a,h_b,h_c\).
a) Tìm tập hợp những điểm M thỏa mãn \(\left(\overrightarrow{MA}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MB}-\overrightarrow{MA}\right)=0\)
b) Điểm K thỏa mãn \(\dfrac{\overrightarrow{KA}}{h_a}+\dfrac{\overrightarrow{KB}}{h_b}+\dfrac{\overrightarrow{KC}}{h_c}=\overrightarrow{IA}\). Chứng minh rằng : K, I, A thẳng hàng.
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
cho hình bình hành ABCD có M, N lần lượt là trung điểm của DC và DA. phân tích các vecto \(\overrightarrow{AB},\overrightarrow{DA},\overrightarrow{BC},\overrightarrow{BD}\) theo 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) với \(\left\{{}\begin{matrix}\overrightarrow{a}=\overrightarrow{AM}\\\overrightarrow{b}=\overrightarrow{BN}\end{matrix}\right.\)