Đề bài của em bị sai, \(AB=CD=2a\) mới đúng, vì nếu \(AB=CD=a\) thì \(MN=a\sqrt{3}\) không thể tồn tại do nó vi phạm bất đẳng thức tam giác
Đề bài của em bị sai, \(AB=CD=2a\) mới đúng, vì nếu \(AB=CD=a\) thì \(MN=a\sqrt{3}\) không thể tồn tại do nó vi phạm bất đẳng thức tam giác
Chỉ câu d thoi ạ Cho tứ diện ABCD. Gọi I và K lần lượt là trung điểm của AB và CD. J là một điểm trên đoạn AD sao cho AD = 3JD.a) Tìm giao điểm F của đường thẳng AC và mặt phẳng BCD b) Tìm giao tuyến d của hai mặt phẳng IJK và ABC. c) chứng minh AC, KJ và d đồng quy d) Gọi O là trung điểm IK và G là trọng tâm tam giác BCD. Chứng minh A,O,G thẳng hàng.
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm cạnh AB, CD, E là điểm chia BC theo tỉ số BE/BC=1/2. Trên đoạn thẳng AM lấy điểm H. Tìm giao tuyến của mặt phẳng (P) đi qua H và song song với mặt phẳng (MNE). Tìm giáo tuyến của mặt phẳng (P) và mặt phẳng (BCD); mặt phẳng (P) và mặt phẳng (ABD)
Cho tứ diện ABCD, M và N lần lượt là trung điểm của AB và CD, P là điểm trên cạnh AD sao cho \(AP=\dfrac{1}{4}AD\) Mặt phẳng (MNP) cắt BD tại I. Tính tỷ số \(\dfrac{ID}{IB}\)
cho tứ diện đều abcd có cạnh bằng 1 gọi m,n lần lượt là trung điểm của bc và ad. trên đường thẳng ab lấy điểm e,trên đường thẳng cn lấy f sao cho ef//dm, tính độ dài ef
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Cho tứ diện ABCD. Trên cạnh AB lấy hai điểm M và M', trên cạnh CD lấy hai điểm N và N'. Khi đó hai đường thẳng MN và M'N':
A. cắt nhau
B. cắt nhau hoặc song song
C. chéo nhau
D. song song
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB và CD. G là trọng tâm của tam giác BCD. Tìm giao điểm của EG với (ACD)
Cho hình chóp S.ABCD có đáy hình bình hành . Gọi M,N,P,Q lần lượt là trung điểm của SA, SB , AB, CD
a) xác định giao điểm K của đường thẳng SD và (MPQ)
b) chứng minh MK song song BC. Chứng minh SC song song (MPQ)
c) chứng minh (MNK) song song (ABCD)
d) xác định thiết diện cắt bởi (MNK) với hình chóp và cho biết thiết diện là hình gì ?
Cho hình chóp S.ABCD có AC và BD cắt nhau tại E; AB và CD cắt nhau tại F. Gọi M, N lần lượt là các điểm trên các đoạn thẳng SA,SB sao cho đường thẳng MN cắt đường thẳng SF, AB tại hai điểm khác nhau. Tìm giao tuyến của mặt phẳng (EMN ) với các mặt của hình chóp đã cho