TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)
Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)
\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)
giúp mình câu này với
Tìm GTNN của biểu thức sau:
