Cho tam giác ABC có AB=AC=5cm,BC=6cm.Gọi I là trung điểm của BC . Từ i kẻ IM vuông góc với AB và IN vuông góc với AC
a CM tam giác AIB = tam giác AIC
b CM AI vuông góc với BC . Tính độ dài đoạn thẳng AI
c Biết góc BAC = 120 độ . khi đó tam giác IMN là tam giác gì ? vì sao?
Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.
Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?
a) 5cm, 12cm, 9cm b) 12 cm, 16 cm, 20 cm
Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE.
a) Chứng minh: ΔABD = ΔACE.
Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC
c) Chứng minh ∆BMC cân.
Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.
b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD
c) Chứng minh AB // CD.
d) Chứng minh:
Bài 11: Cho tam giác ABC có BA < BC và
a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.
b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.
c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.
Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:
a) BD = CE.
b) Tam giác GDE cân.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.
d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho tam giác MNP cân tại M có đường trung tuyến MI.
a) Chứng minh MI ⊥ NP.
b) Kẻ IQ vuông góc MN (Q thuộc MN) IK vuông góc MP (K thuộc MP ) . Chứng minh IQ = IK và IM là đường trung trực của QK.
c) Trên tia đối tia QI lấy điểm E sao cho QE = QI, trên tia đối tia KI lấy điểm F sao cho
KF=KI. Chứng minh tam giác MEF cân.
d) Chứng minh FE // NP
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
Cho tam giác MNP vuông tại M, có góc p < góc n, đường cao MK. Trên nửa mặt phẳng có bờ là đường thẳng NP không chứa điểm M, vẽ tia Nx sao cho tg pnm=pnx. Nx cắt MK kéo dài tại Q.
a) Chứng minh: MNK = QNK .
b) So sánh KM và KN.
. Cho tam giác EFG vuông tại E, kẻ đường cao EH. Trên cạnh EG lấy điểm M sao cho EH = EM. Kẻ MP vuông góc với EG tại M, MP cắt FG tại P. Hãy chọn câu đúng?
A.
B. HM là đường trung trực của đoạn thẳng EP.
C. GP = GM.
D. Cả A, B, C đều đúng.
cho tam giác ABC vuông tại A,Tia phân giác của cắt AC tại D a) biết BCA=40 so sánh AC và AB b)giả sử AB=6cm AC=10 cm.Tính độ dài BC c)kẻ DE vuông góc với BC(e thuộc BC).Chúng minh tam giác ABE cân d)kéo dài cắt tia BA tại K.Chúng minh tam giác BDK=tam giác BDC e)trên tia đối của tia AD lấy điểm M sao cho AM=AD.Qua M kẻ đường thẳng d vuông góc với MB.Từ A kẻ AH vuông góc với đường thẳng d( thuộc d).G là trung điểm của BD.Chứng minh H,A,G thẳng