Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.
Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.
Cho ABC nhon ( AB < AC ) nội tiếp đường tròn (0;R) Hai đường cao BM và CN cắt nhau tai H, AH cắt BC tai D. a) CMR: tứ giác ANHM nội tiếp và AH vuông góc BC tại D. b) CMR AM .AC = AN. AB Nếu BC = 2MN chứng minh góc ACN = 30⁰ c) Kẻ đường kính BK của (O) CMR AH= KC d) CMR H,I,Q thẳng hàng biết AQ là đường kính của (O) I là trung điểm của BC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (AB <AC), đường cao BE của tam giác kéo dài cắt đường tròn (O) tại K. Kẻ KD vuông góc với BC tại D.
a) Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b) Chứng minh KB là tia phân giác của góc AKD.
c) Tia DE cắt đường thẳng AB tại I. Qua E kẻ đường thẳng vuông góc với OA, đường thẳng này cắt AB tại H. Chứng minh CH // KI
cho tam giác ABC có 3 góc nhọn ( AB < AC ) và nội tiếp đường tròn ( O ). Vẽ đường cao AH, ( H thuộc BC ) , từ H kẻ HM vuông góc với AB ( M thuộc AB ) và kẻ HN vuông góc với AC ( N thuộc AC ). Vẽ đường kính AE của đường tròn ( O ) cắt MN tại I. Tia MN cắt ( O) tại K. chứng minh rằng
a, AMHN nội tiếp
b, \(\Delta AMN\sim\Delta ACB\)
c, CEIN nội tiếp và tam giác AHK cân
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O (AB < AC), đường cao AH cắt đường tròn O tại điểm thứ 2 mà M. Kẻ đường kính AD của (O). Chứng minh rằng:
a. AM vuông góc MD
b. Tam giác ABH đồng dạng với tam giác ADC. Từ đó suy ra BM = DC
c. Tứ giác BMDC là hình thang cân
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
Cho ABC nhọn nội tiếp đường tròn (O) đường kính AD (có AB < AC). Gọi AH là đường cao của ABCD. Qua B ke đường thăng vuông góc với đường thăng AD tại E. a) Chứng minh ABHE là tứ giác nội tiếp. 1 b) Chứng minh hai đường thăng HE và AC vuông góc nhau.
Cho ABC nội tiếp đường tròn (O; R) đường kính BC (AB< AC). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại N, ON cắt AC tại K
a/ Chứng minh rằng ON vuông góc AC tại K và AN.AB = AK.BC.
b/ Gọi I là trung điểm của AB kẻ AH vuông góc BC tại H. Chứng minh rằng 5 điểm A, I, H, O, K cùng thuộc một đường tròn. Xác định tâm của đường tròn đó.
c/ AH cắt NO tại L, AL cắt (O) tại điểm P (khác A), tia KL cắt (O) tại M. Chứng minh tứ giác ALCN là hình thoi và LP. LC = R²- OL²