a) Xét \(\Delta MNA,\Delta DPA\) có :
\(MA=DA\) (gt)
\(\widehat{MAN}=\widehat{DAP}\) (đối đỉnh)
\(NA=PA\) (A là trung điểm của NP)
=> \(\Delta MNA=\Delta DPA\left(c.g.c\right)\)
=> \(\text{MN = DP (2 cạnh tương ứng)}\)
b) Xét \(\Delta MNH,\Delta MEH\) có :
\(HN=HE\left(gt\right)\)
\(\widehat{MHN}=\widehat{MHE}\left(=90^o\right)\)
\(MH:Chung\)
=> \(\Delta MNH=\Delta MEH\left(c.g.c\right)\)
=> MN= ME (2 cạnh tương ứng)
=> \(\Delta MNE\) cân tại M.
c) Xét \(\Delta NHP,\Delta EHP\) có :
\(HN=HE\left(gt\right)\)
\(\widehat{NHP}=\widehat{EHP}\left(=90^o\right)\)
\(HP:Chung\)
=> \(\Delta NHP=\Delta EHP\left(c.g.c\right)\)
=> \(NP=EP\) (2 cạnh tương ứng) (*)
Xét \(\Delta MNP,\Delta MEP\) có :
\(MN=ME\) (\(\Delta MNE\) cân tại M)
\(MP:Chung\)
\(NP=EP\) (cmt *)
=> \(\Delta MNP=\Delta MEP\left(c.c.c\right)\)
=> \(\widehat{MNP}=\widehat{MEP}=90^o\) (2 góc tương ứng)
=> \(PE\perp ME\rightarrowđpcm\)
a) Xét tam giác MNA và tam giác DPA , có :
AN = AP ( gt )
AM = AD ( gt )
góc MAN = góc DAP ( đối đỉnh )
=> tam giác MNA = tam giác DPA ( c-g-c )
=> MN = DP ( hai cạnh tương ứng )
Vậy MN = DP
b) Ta có : góc MHN + góc MHE = 180o ( hai góc kề bù ) mà góc MHN = 90o nên góc MHE = 90o
Xét tam giác MHN và tam giác MHE , có :
MH : chung
HN = HE ( gt )
góc MHN = góc MHE ( = 90o )
=> tam giác MHN = tam giác MHE ( hai cạnh góc vuông )
=> MN = ME ( hai cạnh tương ứng )
=> tam giác MNE cân tại M
Vậy tam giác MNE cân
c) Ta có : góc PHN + góc PHE = 180o ( hai góc kề bù ) mà góc PHN = 90o ( gt ) => góc PHE = 90o
Xét tam giác PHN và tam giác PHE , có :
PH : chung
HN = HE ( gt )
góc PHN = góc PHE ( = 90o )
=> tam giác PHN = tam giác PHE ( ai cạnh góc vuông )
=> PN = PE ( hai cạnh tương ứng )
Xét tam giác MNP và tam giác MEP , có :
MN = ME ( chứng minh trên )
PN = PE ( chứng minh trên )
MP : chung
=> tam giác MNP = tam giác MEP ( c-c-c )
=> góc MNP = góc MEP ( = 90o ) hay PE \(\perp ME\)
Vậy PE \(\perp ME\) ( đpcm )