cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.Cho tam giác ABC nhọn (AB < AB) nội tiếp (O;R) , kẻ đường cao AD của tam giác ABC, M và N là hình chiếu của D trên AB và AC. MN cắt BC tại P
1) C/m các tứ giác AMDN và BCMN nội tiếp.
2) C/m: PB.PC= PM.PN và OA vuôn góc với MN.
3) Tính diện tích hình viên phân giới hạn dây AB và cung nhỏ AB khi BA= R\(\sqrt{3}\)
4) Gọi H là giao điểm của PA với (O), I là tâm đường tròn ngoại tiếp tam giác BMN. C/m: H,D, I thẳng hàng.
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ) . Gọi E là điểm nằm chính giữa cung nhỏ BC. a) Cm : góc CAE = góc BCE b) Trên cạnh AC lấy điểm M sao cho E M = E C , N là giao điểm ( N ≠ B ) . gọi I là giao điểm của MB và AE , K là giao điểm của AC với EN. cm EKMI là tứ giác nội tiếp. mn, các anh các chị giúp e vs, giải đc sẽ tick đúng cho mn 3 lần luôn ạ. chốt 9h tối nay ạ.
Cho đường tròn có định (O), bán kính R=1, tam giác MNP thay đổi luôn ngoại tiếp đường tròn (O), các cạnh MN và MP tiếp xúc với (O) lần lượt tại A và B. Một đg thg đi qua O cắt MN, MP ở C và D
a) MAOB nội tiếp
b) OM.AB=2MB.OA
c) Xác định vị trí nhỏ nhất của diện tích tam giác MCD
Cho đường tròn (O,R) dây cung MN (MN<2R) .Trên tia dối của tia MN lấy điểm A. từ A kẻ tiếp tuyến AAB<AC tới đường tròn O.
a) Cm A,B,C,D cùng thuộc 1 đường trong. CHỈ rõ tâm O' và bán kính của đường tròn ngoại tiếp tứ giác ABCD.
b) Cm AB2 =AC2 =AM.AN
c) GỌi I là trung điểm của MN. Kẻ BI cắt dường tròn tại E. Cm EC song song với AN
cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
Cho tam giác MPQ có 3 góc đều nhọn nội tiếp trong đường tròn (O) . Hai đường cao MI và QK cắt nhau tại H , đường cao MI cắt đường tròn (O) ngoại tiếp tam giác MQP tại N . Vẽ đường kính ME . Chứng minh :
a) QH=QN
b) Tứ giác PNEQ là hình thang cân
c) HE đi qua trung điểm F của QP
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi AH, BK là đường cao của tam giác ABC (H thuộc BC; K thuộc AC). Các tia AH, BK lần lược cắt (O) tại các điểm thứ hai là D, E a)Trên hình vẽ có bao nhiêu tứ giác nội tiếp một đường tròn. Hãy chứng minh b Chứng minh rằng: góc AHC bằng Góc ADC.