a, Dễ dàng chứng minh được \(\Delta MNI=\Delta MPI\left(c.c.c\right)\) (phần này dễ, bạn tự chứng minh nha)
b, Theo chứng minh phần a, ta có:
\(\Delta MNI=\Delta MPI\Rightarrow\widehat{IMH}=\widehat{IMK}\)
Từ đây, ta suy ra \(\Delta MHI=\Delta MKI\left(ch-gn\right)\Rightarrow IH=IK\) (đpcm)
(Mình lằm tắt, bạn tự chứng minh đầy đủ nhé)
c, Do \(\Delta MPI\) và \(\Delta MKI\) đều vuông và có chung \(\widehat{IMK}\) nên \(\widehat{MIK}=\widehat{PMI}\)
Từ đó, ta suy ra \(\Delta KIP\sim\Delta KMI\left(g.g\right)\Rightarrow\frac{IK}{MK}=\frac{KP}{IK}\)
\(\Rightarrow IK^2=MK\cdot KP\\ \Rightarrow2IK^2=2MK\cdot KP+MK^2-MK^2+KP^2-KP^2\\ \Rightarrow2IK^2=\left(MK+KP\right)^2-MK^2-KP^2\)
\(\Rightarrow2IK^2=MP^2-MK^2-KP^2\) (đpcm)
Chúc bạn học tốt nha.