Bán kính đường tròn ngoại tiếp của ΔABC là:
\(R=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Bán kính đường tròn ngoại tiếp của ΔABC là:
\(R=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Cho tam giác đều ABC có cạnh bằng 4cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC có ba góc đều nhọn nội tiếp trong đường tròn (O;R) Các đường cao AD, BE, CF đồng quy
tại H, r là bán kính đường tròn nội tiếp trong tam giác ABC
a) Chúng minh OA vuông góc EF
b) Chứng minh rằng H là tâm đường tròn nội tiếp tam giác DEF
c) Chứng minh rằng nếu AD+BE+CF =9r thì tam giác ABC là tam giác đều
d)Cho AB=\(R\sqrt{2}\),AC=\(R\sqrt{3}\) thì tam giác DEF là hình gì?Vì sao?
cho tam giác đều ABC nội tiếp đường tròn (O;R).gọi (O') là đường tròn tiếp xúc trong với đường tròn (O) và tiếp xúc hai cạnh AB,AC theo thứ tự tại M và N
a, CMR 3đ O,M,N thẳng hàng
b,tính bán kính của (O') theo R
Cho tam giác ABC vuông tại A, tiếp điểm của đường tròn nội tiếp với cạnh huyền chia cạnh huyền thành 2 phần có độ dài 9 cm và 4cm. Tính diện tích tg ABC, hãy tổng quát bài toán trên
Cho tam giác ABC vuông tại A, đường cao AH, biết HB=2cm, HC=18cm. TÍnh độ dài AB;AH và diện tích đường tròn ngoại tiếp tam giác ABC
cho tam giác ABC vuông tại C có \(\widehat{A}< \widehat{B}\). gọi I, O thứ tự là tâm đường tròn nội tiếp, ngoại tiếp ΔABC. biết ΔBIO vuông . tính tỉ số các cạnh của ΔABC
Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)
1) Chứng minh tam giác AMN can
2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)
3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.
Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)
1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB
2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB
3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)