Câu 5:(4,0 điểm) Cho tam giác ABC cân (AB = AC). Các đường cao AG, BE, CF gặp nhau tại H.
a. Chứng minh 4 điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b. Chứng minh GE là tiếp tuyến của đường tròn tâm I.
c. Chứng minh AH.BE = AF.BC
d. Cho bán kính của đường tròn tâm I là r và góc BAC = α . Hãy tính độ dài đường cao BE của tam giác ABC.
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
Cho tam giác ABC (AB<AC) có 3 góc nội tiếp đường tròn (O;R), hai đường cao BE, CF cắt nhau tại H
a) CM: tứ giác AEHF nội tiếp đường tròn
b) CM: FA.FB= FC.FH
c) CM: OA vuông góc EF
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
Cho tam giác ABC nhọn nội tiếp (O). Các đường cao AD,BE,CF cắt nhau tại H
a) C/m tứ giác BFHD,BFEC nội tiếp. Xđ đường tròn tâm I ngoại tiếp tứ giác BFEC.
b) Vẽ đường kính AK. C/m AB.AC=AD.AK
c) Vẽ CN vuông góc AJK. C/m ID=IN
d) EF cắt BC tại M, KH cắt (O) tại P. C?m P,M,A thẳng hàng
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ
Cho tam giác ABC nội tiếp (O) đường kính BC có AB > AC , hai tiếp tuyến tại A và B cắt nhau tại M .
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn và xác định tâm I của đường tròn này.
2) Chứng minh : .
3) Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.