a: Xét ΔMBE vuông tại E và ΔMCF vuông tại F có
MB=MC
góc BME=góc CMF
Do đó: ΔMBE=ΔMCF
=>BE=CF
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó; BECF là hình bình hành
=>BF//CE
a: Xét ΔMBE vuông tại E và ΔMCF vuông tại F có
MB=MC
góc BME=góc CMF
Do đó: ΔMBE=ΔMCF
=>BE=CF
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó; BECF là hình bình hành
=>BF//CE
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
cho tam giác abc, 3 đường trung tuyến ad,be,cf. từ f kẻ đường thẳng song song với ad cắt ed tại i
a) cmr ic song song với be. ic=be
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
Cho tam giác ABC có M là trung điểm BC . Kẻ BE vuông góc AM tại E , CF vuông góc với AM tại F .
a/ Chứng minh : tam giác BEM= tam giác CFM
b/ chứng minh : BE=CF
c/ chứng minh : BF//CE
Cho \(\Delta ABC\) có AM là đường trung tuyến. Kẻ \(BE\perp AM\) tại E và \(CF\perp AM\) tại F
a) CMR: \(BE=CF\)
b) CMR: \(BE//CE\)
c) \(AE+AF=2AM\)
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho tam giác ABC, M là một điểm nằm trong tam giác ABC. Gọi D là giao của AM và BC, E là giao của BM và CE, F là giao của CM và AB. Đường thẳng qua điểm M song song với BC cắt DE và DF lần lượt tại K và I. Chứng minh: MI = MK
Tam giác ABC vuông cân tại A có AD là trung tuyến. Trên đoạn thẳng DC lấy điểm H. Hạ BE và CF vuông góc với đường thẳng AH (E, F thuộc đường thẳng AH).
a. CMR: BE = AF.
b. Gọi G là giao điểm của AD và BE. CMR: GH song song với AC.
c. CMR: tam giác DEF vuông cân tại D.
d. CMR: HE > HD.
Bài 1: Cho tam giác ABC có các đường trung tuyến AD =15 cm, BE= 36 cm, CF= 39 cm. Tính cạnh BC
Bài 2: Cho tam giác ABC, phân giác góc B và C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB ở D, cắt AC ở E. Tính DE,DB,EC rồi so sánh DE với DB+EC