a) Xét \(\Delta\)BMA và \(\Delta\)DMA có:
BA = DA (gt)
\(\widehat{BAM}\) = \(\widehat{DAM}\) (suy từ gt)
AM chung
=> \(\Delta\)BMA = \(\Delta\)DMA (c.g.c)
=> BM = DM (2 cạnh t/ư)
b) Vì \(\Delta\)BMA = \(\Delta\)DMA (câu a)
=> \(\widehat{ABM}\) = \(\widehat{ADM}\) (2 góc t/ư)
hay \(\widehat{ABC}\) = \(\widehat{ADK}\)
Xét \(\Delta\)DAK và \(\Delta\)BAC có:
\(\widehat{A}\) chung
DA = BA (gt)
\(\widehat{ADK}\) = \(\widehat{ABC}\) (c/m trên)
=> \(\Delta\)DAK = \(\Delta\)BAC (g.c.g)