Cho tam giác ABC vuông tại A,kẻ đường cao AH AB=3cm,AC=4cm a)tính BC,AC b)tính góc BAH c)Chứng MINH BH=CH.tan2B
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
cho tam giác ABC vuông tại A (AB < AC) kẻ đường cao AH gọi E, N, M lần lượt là trung điểm của AB AC BC .
a) CM : HE vuông góc với HN
b) từ A kẻ đường thẳng song song với BC cắt ME , MN lần lượt ở K , F . CM : AMBK là hình thoi
CẦN GẤP Ạ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC , góc A=90 độ , đường cao AH.
a. Biết BC=12cm. , AC=6cm. Tính BH , HC
b, biết BH=2cm , HC=5cm. Tính AB,AC,AH
c. Biết AH=4cm , HC=3cm. Tính HB,AB,AC
d, biết AB=6cm , AB/AC =3/4cm. Tính BC,BH,AH,HC
cho tam giác ABC có đường coa AH ( H nằm giữa C và D ) AH=12cm, HB=9cm,BC=25cm
a) CM tam giác ABC vuông tại A
b) Kẻ Bx // AC cắt AH tại D. tính HD và cm AB^2=AC.BD
c) kẻ DE vuông với AC ( E thuộc AC ) DE cắt BC tại F. cm BH^2=HF.HC
d) CM S tam giác ABH = S tam giác CDH ( ko cần tính S)
cho tam giác abc vuông tại a có ab=3cm ac=4cm, đường cao ah. lấy i thuộc cạnh ab sao cho ia/ib=1/2, ci cắt ah tại e . tính ce
Cho tam giác ABC vuông tại A đường cao AH=3cm, BH=4cm. Tính độ dài các đoạn thẳng HC,BC,AB,AC
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC
b, AH^3= BD.CE.BC
Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N
a, CM : tam giác DMN cân
b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB
Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D
a, CM ; \(AB^2 / AD^2= HC /BC\)
b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)
c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD
Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM
a, CM; AM vuông góc AN
b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)