Cho tam giác ABC vuông tại A .Đường phân giác của góc B cắt AC tại E.Kẻ EH vuông góc với BC (H thuộc BC) . a/ Chứng minh tam giác ABE = tam giác HBE b/ Chứng minh BE là đường trung trực của đoạn thẳng AH. c/ Gọi I là giao điểm của Be và AH .Cho AB = 10 cm, AH = 16 cm và G là trọng tâm của tam giác ABH. Tính BG. d/ Gọi K là giao điểm của AB và EH. Chứng minh tam giác BCK cân.
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Cho tam giác ABC vuông tại B. Biết AB=3cm, BC=4cm. Câu a: tính AC. Câu b: kẻ tia phân giác CK ( K thuộc AB ) , kẻ KH vuông góc với AC tại H. Chứng minh tam giác BCK= tam giác HCK. Câu c: Gọi M là giao điểm của đường thẳng HK và CB, chứng minh AK=MK
Cho tam giác ABC vuông tại B ,Vẽ AD là tia phân giác góc BAC (D thuộc BC).Từ D kẻ De vuông góc AC (E thuộc AC).Gọi F là giao điểm của tia DE và AB .a)Chứng minh :tam giác ABE là tam giác cân.b)Tam giác ADF=Tam giác ADC.c) Chứng minh BA+BC>DE+AC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác ABC có AB < AC. Qua trung điểm K của BC vẽ đường thẳng d vuông góc với tia phân giác của góc A, d cắt AB, AC lần lượt tại H, I.
a) Chứng minh rằng: BH = CI
b) Chứng minh rằng: góc KAB> góc KAC
c) Nếu góc A vuông, gọi M, N lần lượt là trung điểm của AB, AC. Cmr: BN^2 + CM^2 = 5/4 * BC^2
d) Lấy điểm P thay đổi trên AB, điểm Q thay đổi trên AC sao cho BP = CQ. Chứng minh rằng: Đường thẳng đi qua trung điểm và vuông góc với PQ luôn đi qua một điểm cố định.
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
Cho tam giác abc vuông tạ a( ab<ac) kẻ bd là tia phân giác của góc abc (d thuộc ac), trên cạnh BC lấy điểm E sao cho AB=AE
a) Chứng minh tam giác ABD=tam giác EBD
b) So sánh AD và DC
c) Đường thẳng ED cắt đường thẳng AB tại F, gọi S là trung điểm của FC. Chứng minh ba điểm B, D, S thẳng hàng