a: Ta có; ΔCAB vuông tại B
=>\(BA^2+BC^2=CA^2\)
=>\(CA^2=3^2+4^2=25\)
=>\(CA=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCBK vuông tại B và ΔCHK vuông tại H có
CK chung
\(\widehat{BCK}=\widehat{HCK}\)
Do đó: ΔCBK=ΔCHK
c: ta có: ΔCBK=ΔCHK
=>KB=KH
Xét ΔKBM vuông tại B và ΔKHA vuông tại H có
KB=KH
\(\widehat{BKM}=\widehat{HKA}\)(hai góc đối đỉnh)
Do đó: ΔKBM=ΔKHA
=>KM=KA