a, xét tam giác ABC ta có
AH là đường cao=> góc AHB=90 độ
lại có \(AD\perp BE\)=> góc ADB=90 độ
=>góc AHB= góc ADB=90 độ
mà D,H là 2 đỉnh liên tiếp của tứ giác ADHB
=> tứ giác ADHB nội tiếp đường tròn đường kính AB
lấy điểm O là trung điểm AB=>O là tâm đường tròn ngoại tiếp tứ giác ADHB
b, xét tam giác ABC có BE là phân giác=> góc HBD= góc ABD
lại có tam giác ABC vuông tại A=> góc ABE+ góc AEB=90 độ
hay góc ABD+ góc AED =90 độ(1)
xét tam giác ADE vuông tại E (vì AD\(\perp BE\))
=> góc EAD+góc AED=90 độ(2)
từ(1)(2)=> góc ABD= góc EAD
=>góc EAD= góc HBD(= góc ABD)
c, xét đường tròn(O) => OA=OH=OB=1/2.AB=\(\dfrac{a}{2}\)=R
có OH=OB=>tam giác BOH cân tại O
lại có góc ABC=60 độ hay góc OBH=60 độ=> tam giác OBH đều
=> góc OBH=góc BOH=60 độ=>góc AOH=120 độ( kề bù)
=>góc AOH=số đo cung AOH=120 độ( góc ở tâm)
=> S quạt AOH=\(\dfrac{\pi.R^2.n}{360}=\dfrac{\pi.\left(\dfrac{a}{2}\right)^2.120}{360}=\dfrac{\pi.a^2.30}{360}=\dfrac{\pi.a^2}{12}\)