Ta có hình vẽ:
a) Vì AD là phân giác của ABC nên ABD = DBC
Xét Δ ABD và Δ EBD có:
AB = BE (gt)
ABD = EBD (cmt)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)
\(\Rightarrow DE\perp BE\) hay \(DE\perp BC\left(đpcm\right)\)
c) Gọi H là giao điểm của AE và BD
Xét Δ ABH và Δ EBH có:
AB = EB (gt)
ABH = EBH (câu a)
BH là cạnh chung
Do đó, Δ ABH = Δ EBH (c.g.c)
=> AH = EH (2 cạnh tương ứng) (1)
và AHB = EHB (2 góc tương ứng)
Mà AHB + EHB = 180o (kề bù) nên AHB = EHB = 90o
\(\Rightarrow BH\perp AE\) hay \(BD\perp AE\left(2\right)\)
Từ (1) và (2) => BD là đường trung trực của AE (đpcm)
Ta có hình vẽ:
Gọi BD cắt AE tại M
a/ Xét tam giác ABD và tam giác EBD có:
BD: cạnh chung
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{DBE}\) (GT)
=> tam giác ABD = tam giác EBD (c.g.c)
b/ Ta có: tam giác ABD = tam giác EBD (câu a)
=> \(\widehat{A}\)=\(\widehat{E}\)=900 (2 góc tương ứng)
=> DE \(\perp\)BC (đpcm)
c/ Xét tam giác ABM và tam giác EBM có:
BM: cạnh chung
\(\widehat{ABM}\)=\(\widehat{MBE}\)(GT)
\(\widehat{A}\)=\(\widehat{E}\)=900
Trường hợp cạnh huyền góc nhọn
=> tam giác ABM = tam giác EBM (g.c.g)
=> \(\widehat{AMB}\)=\(\widehat{EMB}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{EMB}\)=1800
=> \(\widehat{AMB}\)=\(\widehat{EMB}\)=900
=> BD \(\perp\)AE
Mà BM là phân giác góc B
=> BD là trung trực của AE (đpcm)
Ta có hình vẽ sau:
a) Xét ΔABD và ΔEBD có:
BD: Cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (gt)
BE = BA (gt)
=> ΔABD = ΔEBD (c.g.c) (đpcm)
b) Vì ΔABD = ΔEBD(ý a)
=> \(\widehat{BAD}\) = \(\widehat{BED}\) (2 góc tương ứng)
=> DE \(\perp\) BC (đpcm)
c) Gọi O là giao điểm của BD và AE
Xét ΔBAO và ΔBEO có:
BO: Cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (gt)
BA = BE (gt)
=> ΔBAO = ΔBEO (c.g.c)
=> OA = OE (2 cạnh tương ứng)
=> O là trung điểm của AE
mà BA = BE
=> BD là đường trung trực của AE (đpcm)