a)Xét ΔABD và ΔEBD có:
AB=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
BD:cạnh chung
=> ΔABD=ΔEBD(c.g.c)
=> \(\widehat{BAD}=\widehat{BED}=90^o\)
=> \(DE\perp BC\)
Vì: ΔABD=ΔEBD(cmt)
=>AD=DE
Vì: AB=BE(gt) ; AD=DE(cmt)
=> B,D thuộc vào đường trung trực của đt AE
=>BD là đường trung trực của đt AE
=>\(AE\perp BD\)
b) Xét ΔDEC vuông tại E(cmt)
=> \(DE< DC\)
Mà: DE=AD
=> AD<DC
c)Vì: BF=BA+AF ; BC=BE+EC
Mà: BF=BC(gt); BE=BA(gt)
=>AF=EC
Xét ΔADF và ΔEDC có:
AF=EC(cmt)
\(\widehat{FAD}=\widehat{DEC}=90^o\left(cmt\right)\)
AD=DE(cmt)
=>ΔADF=ΔEDC(c.g.c)