\(AB^3\cdot AC=AB^2\cdot AB\cdot AC\)
\(=AH\cdot BC\cdot BH\cdot BC^2\)
\(=BH\cdot AH\cdot BC^3\)
\(AB^3\cdot AC=AB^2\cdot AB\cdot AC\)
\(=AH\cdot BC\cdot BH\cdot BC^2\)
\(=BH\cdot AH\cdot BC^3\)
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)
Cho tam giác ABC vuông tại A, đường cao AH, vẽ HM vuông góc với AM, HN vuông góc với AC.
a) CHứng minh: AM.AB=AN.NC
b) Biết AH=2cm, BC=5cm. Tính diện tích tứ giác AMHN
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh:\(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh: \(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là hình chiếu vuông góc của H trên các cạnh AB và AC. Chứng minh: \(S_{ABC}\ge4S_{ADE}\)