a: \(HC=\dfrac{AH^2}{BH}=10,24\left(cm\right)\)
BC=BH+CH=35,24(cm)
\(AB=\sqrt{25\cdot35.24}=\sqrt{881}\left(cm\right)\)
\(AC=\sqrt{35,24\cdot10,24}\simeq18,997\left(cm\right)\)
b: \(BC=\sqrt{5^2+7^2}=\sqrt{74}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{35\sqrt{74}}{74}\left(cn\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{25\sqrt{74}}{74}\left(cm\right)\)
\(CH=\dfrac{AC^2}{BC}=\dfrac{49\sqrt{74}}{74}\left(cm\right)\)
c: AB/AC=5/6
nên \(\dfrac{HB}{HC}=\dfrac{25}{36}\)
Đặt HB/25=HC/36=k
=>HB=25k; HC=36k
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>900k2=900
=>k=1
=>HB=25; HC=36