a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH=AB^2/BC=3,6cm
CH=BC-BH=6,4(Cm)
b: \(AM\cdot AB=AH^2\)
AN*AC=AH^2
DO đó: AM*AB=AN*AC
AB*BM*AC*CN
=BH^2*CH^2
=AH^4
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH=AB^2/BC=3,6cm
CH=BC-BH=6,4(Cm)
b: \(AM\cdot AB=AH^2\)
AN*AC=AH^2
DO đó: AM*AB=AN*AC
AB*BM*AC*CN
=BH^2*CH^2
=AH^4
cho tam giác ABC vuông tại A, đường cao AH. gọi M,N lần lượt là chân đường vuông góc kẻ vuông góc từ H đến AB và AC. Gọi I là trung điểm BC, K là giao điểm AI và MN
a. C/M \(\dfrac{1}{AK^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
b.\(\dfrac{AB}{AC}=\sqrt[3]{\dfrac{BM}{CN}}\)
d. \(AH^2=AB.AC.sinB.cosB\)
e. \(BM.\sqrt{CH}+CN.\sqrt{BH}=AH.\sqrt{BC}\)
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)
Bài 2: Cho ΔABC có AB=6cm, AC=8cm, BC=10c, Kẻ đường cao AH của ΔABC.
a) Tính độ dài AH và BH
b)AH=BC.sinB.cosB
c) lấy điểm M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là E và K. Chứng minh : \(\dfrac{1}{AM^2}+\dfrac{1}{AK^2+AE^2}\)
d) Hỏi M ở vị trí nào trên cạnh BC thì EK có độ dài nhỏ nhất
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông
* Cho tam giác ABC vuông tại A có đường cao AH. Biết BH=10cm, CH=42cm. Tính BC, AH, AB và AC
* Hình thang cân ABCD có AB=30 cm, đáy nhỏ CD=10cm và góc A là \(60^0\).
a. Tính cạnh BC
b. Gọi M,N lần lượt là trung điểm AB và CD.Tính MN
Cho ΔABC vuông tại A, có \(\widehat{ABC}=30\text{° }\). Gọi H là chân đường cao kẻ từ A của ΔABC. Hai điểm I, M lần lượt là trung điểm của Ah và AI. Điểm E là chân đường cao kẻ từ H của ΔBHM.
a) Chứng minh: \(\dfrac{HC}{HB}=\dfrac{MA}{MH}\)
b) Tính số đo \(\widehat{AEB}\)
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC