Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thế Vinh Nguyễn

Cho tam giác abc vuông tại A cs Ab = 6 cm , ac = 8 cm . vẽ đường cao AH và đường phân giác bd ( h thuộc bc , d thuộc ac) gọi i là giao điểm của ah và bd

a, tính ad,dc

b, chứng minh ∆abd và tam giác hbi đồng dạng

c, chứng minh ∆ aid là tam giác cân

Nguyễn Trung Hiếu
14 tháng 5 2019 lúc 22:22

A B C D H I 6 8
a. Xét tam giác ABC vuông tại A: BC2 = AB2 + AC2
Hay BC2 = 62 + 82
BC2 = 36 + 64 = 100
=> BC = \(\sqrt{100}\) = 10 (cm)
Tam giác ABC có: BD là đường phân giác của \(\widehat{ABC}\)
=> \(\frac{AB}{AD}=\frac{BC}{CD}\)
Hay \(\frac{AB}{AD}=\frac{BC}{AC-AD}\)
=> \(\frac{6}{AD}=\frac{10}{8-AD}\)
=> 6(8 - AD) = 10AD
=> 48 - 6AD = 10AD
=> 48 = 10AD + 6AD
=> 48 = 16AD
=> AD = 3 (cm)
Ta có : AD + DC = AC
=> DC = AC - AD
Hay DC = 8 - 3
=> DC = 5 (cm)
b. Xét 2 tam giác vuông ABD và HBI:
\(\widehat{ABD}=\widehat{HBI}\) (BD là đường phân giác của \(\widehat{ABC}\))
Suy ra: \(\Delta ABD\sim\Delta HBI\) (g.g)
c. Chưa suy nghĩ ra nha bạn!!!


Các câu hỏi tương tự
Lucy Phạm
Xem chi tiết
Ctuu
Xem chi tiết
Nguyễn Tiến Thanh
Xem chi tiết
Nguyễn Tiến Thanh
Xem chi tiết
Nguyễn Tuệ Minh
Xem chi tiết
Nguyễn Tuệ Minh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
phamthiminhanh
Xem chi tiết
nguyen ngoc son
Xem chi tiết